ZHEXIN(TONY) WU

Rämistrasse 101, Zürich, Schweiz zhexwu at student dot ethz do	t ch https://n.ethz.ch/~zhexwu/
EDUCATION	
Management, Technology and Economics, ETH Zürich	Master of Science, Sep 2023 - Present
Information Technology and Electrical Engineering, ETH Zürich Maste Major: Signal Processing and Machine Learning	r of Science with Distinction, Sep 2021 - Jul 2023 GPA: 5.76/6.00
Electrical and Computer Engineering, University of Michigan - Ann Arbor Didn't finish due to PP 10043	Master of Science, Sep 2020 - May 2021
Major: Signal and Image Processing and Machine Learning (SIPML)	GPA: 4.00/4.00
Yuan Shen Honors College, Beihang Univ. Major: Electronic and Information Engineering	Bachelor of Engineering, Sep 2015 - Jul 2019 GPA: 3.80/4.00, Ranking: 15/209
Chengdu No.7 High School	Sep 2012 - Jun 2015
RESEARCH EXPERIENCE	
 MR Image Reconstruction with Diffusion Models and Implicit Neural Represent Advised by Dr. Valery Vishnevskiy and Prof. Sebastian Kozerke [paper][slides]code (diffusion models)[code (implicit NR)] Developed score-based diffusion models for 2D and 2D + time CMR image reconstruction algorith Proposed proximal mapping for complex-valued image reconstruction algorith Conducted extensive ablation study on type of algorithm (sampling or MAP), patching-attefacts removal strategies 	ations Master's Thesis Oct 2022 to Jun 2023 Onstruction with high acceleration rates in with score-based diffusion models choice of prior (model-based or data-driven) and
 Developed implicit neural representations for 2D, 2D + time and higher dimen Proposed one-shot hyperparameter-tuning global implicit representation Proposed subject-agnostic local implicit function for reconstruction of coarsely 	sional CMR image reconstruction y binned k-space
 In-Vivo Fetal Thalamus Parcellation With Dr. Hui Ji and Prof. András Jakab Unsupervised fetal thalamus functional group recognition with clustering algo Feature engineering using coordinate and spherical harmonic coefficient from Optimized for high reproducibility between scan and re-scan data with image Implemented scree plot, silhouette score and gap statistic for choosing optimation 	Project Collaborator & Software Developer Mar 2023 to Present rithms diffusion MRI registration and Bayesian optimization al number of clusters
Sequence Models in 3D MRI Brain Metastases Detection Advised by Prof. Ender Konukoglu [paper][slides][code] • Task: Brain metastases detection in T_1 -weighted 3D MR images • Revealed statistical significance of sequence models by training simple continu • Reduced false positives by incorporating active learning • Investigated the use of deep reinforcement learning agent	Semester Thesis Apr 2022 to Jul 2022 Jous patch-sequence classifier
Effects of Data Augmentation and Semi-Supervised Learning in Domain General Advised by Prof. Ender Konukoglu [paper][slides][code] • Task: 2D MRI cardiac image segmentation under domain-shift • Investigated using consistency loss as both auxiliary loss for training and proxy • Proposed a new inversion-based data augmentation • Conducted rich experiments on different data augmentation schemes • Investigated the use of meta-learning	Ization Semester Thesis Oct 2021 to Mar 2022
 Manifold Optimization & Neural Collapse Advised by Prof. Qing Qu[paper] [code] Created a smooth introduction to Riemannian submanifold optimization, wit examples. Participated in project A Geometric Analysis of Neural Collapse with Unconstruct Carried out experiments on neural collapse of CNN's last layer with oblique-main 	Research Assistant Jan 2021 to Jun 2021 h geometric illustration and concrete algorithmic ained Features and proof-read the script. hifold constraints on features and/or layer weights.
SAR Ship Target Recognition Methods Based on Deep Learning Advised by Assoc. Prof. Wei Yang	Undergraduate Thesis Nov 2018 to Jun 2019

Advised by Assoc. Prof. Wei Yang

- Coded CNN architectures including VGG-16, ResNet, and InceptionNet using Keras+Tensorflow on single target classification
- Studied optimization methods with respect to tradeoffs among dataset size, limit of computation and classification accuracy
- Experimented with YOLO algorithm on multi-target recognition

• Fine-tuned hyper-parameters w.r.t. training optimization and customized CNN architecture to fit the scale of the tasks

Intelligent Robot and Measurement and Control Laboratory (IR & MCT)

Advised by Prof. Weihai Chen

- Learned basic theories of machine learning and deep learning, including ANN and CNN
- Worked with and assisted a graduate student in CNN building using TensorFlow on his project Attention Based Weakly Supervised Localization with Reinforcement Learning
- Attended seminars to participate in the discussion and learn more advanced topics

PROJECTS

Model Fusion for Medical Image Segmentation via Optimal Transport

[paper][code]

- Extension of model fusion via optimal transport from cascade-like architecture (VGG, ResNet & etc) to more general architecture whose computational graph has richer adjacency structure
- Proposed model fusion approaches for prevalent U-Net and Transformer architectures used for medical image segmentation
- Comprehensive ablation study on fusion weighting scheme for typical medical data scenarios including distributed learning and domain-shift issue

Permutation-Invariant Variational Network for 2D + Time Cardiac Image Reconstruction [paper][code]

- Implemented permutation-invariant variational network in PyTorch
- Implemented 2D and 3D variational network to make comparison with permutation-invariant variational network
- Re-organized derivation of optimization steps for loop-unrolling

Monitoring Social Distancing and Mask Wearing

[paper] [video][code]

- Selected the topic and created the framework of the pipeline
- Responsible for human instance segmentation and face detection; proposed a chin locator based on the results of instance segmentation via Mask R-CNN
- Augmented face dataset with Gaussian Pyramid and integrated multiple datasets
- Improved the performance of mask classifier by designing a upsampler based on DCGAN with a group member
- Created prototype of social distance circle mapping using homography with a group member

Michigan Tourist Guide

[report] [video] [code]

- Gathered data from multiple sources with web APIs and web crawling with BeautifulSoup4.
- Created a full-stack web app with Flask with rich interactive functionalities.

The 13th Mathematical Modeling Contest of Beijing Normal University Advised By Assoc. Prof. Yingzhe Wang Project: Tourist-flow Prediction at South Luogu Lane in Beijing, China

- Constructed cellular automata model to simulate the changes in tourist-flow with MATLAB
- Later improved theoretical basis of the paper for the contest by constructing a model based on PDEs (Partial Differential Equations) with varied boundary conditions (compared to the original map); the polished work as the final course project achieved 1/209 of the whole class

SELECTED ONLINE COURSES AND PROJECTS

A full list of online courses & projects can be viewed here

• Sparse Representations in Signal and Image Processing (by Technion)

- o **Topics:** Theoretical analysis of P_0 problem and guarantee of pursuit algorithms' stability; greedy pursuit algorithms and L_1 relaxation; FISTA and K-SVD algorithms(Dictionary Learning); application of sparseland model in image denoising, morphological components analysis(MCA), super resolution & etc.
- o **Projects in Python:** OMP & Basis Pursuit for solving P_0 ; Image Reconstruction with OMP; Unitary Dictionary Learning; Image Denoising with Dictionary Learning; Image Deblurring
- Introduction to Biomedical Imaging (by UQ)
 - o Topics: X-Rays, CT, Ultrasound, MRI, PET & SPECT
 - o Reading: Introduction to Biomedical Imaging by Andrew G. Webb, with augmenting online lectures of EPFL's Fundamentals of **Biomedical Imaging**

EECS 504 Course Project

Nov 2020 to Dec 2020

Team Leader, Second Prize

SI 507 Course Project

Mar 2021 to Apr 2021

Apr 2017 to May 2017

Jul 2021 to Aug 2021

Sep 2020 to Dec 2020

Research Assistant

Jan 2018 to Dec 2018

Course Project

May 2022 to Jun 2022

Course Project

Sep 2022 to Jan 2023

AWARDS

- National Scholarship for 2016-2017 academic year
- Merit Student for 2015-2016, 2016-2017 and 2017-2018 academic year
- First Prize of Learning Merit Scholarship for 2015-2016 and 2016-2017 academic year
- University Excellent Student for 2016-2017 academic year
- Second prize of The 13th Mathematical Modeling Contest of Beijing Normal University
- Third Prize of Academic Competition Scholarship
- First Prize of Excellent Social Work
- The 27th and 28th National High School Student Chemistry Competition, Second Prizes

SKILLS SUMMARY

Programming Languages Python, C/C++, Julia, MATLAB, Bash Script, Java, MEX
Machine Learning PyTorch, JAX, TensorFlow, OpenCV, Hugging Face
Financial & Statistical Analysis R, Stata, SPSS, Excel VBA, JoinQuant, Wind Financial Terminal
Web Development HTML5, CSS3, JavaScript, SQL, BootStrap4, Flask, Django, Ruby on Rails
Hobbies Classical Piano, English Literature
Languages Chinese (Native), English (Fluent), Deutsch (Anfänger)

GRADUATE COURSES AT ETH ZÜRICH

263-3210-00L Deep Learning[code] 263-5210-00L Probabilistic Artificial Intelligence[code] 401-4944-20L Mathematics of Data Science 851-0252-15L Network Analysis 252-0220-00L Introduction to Machine Learning [code] 227-0391-00L Medical Image Analysis 227-0424-00L Model- and Learning-Based Inverse Problems in Imaging[code] 227-0948-00L Magnetic Resonance Imaging in Medicine 227-0449-00L Seminar in Biomedical Image Computing 401-3901-00L Linear & Combinatorial Optimization 401-3621-00L Fundamentals of Mathematical Statistics 227-0447-00L Image Analysis and Computer Vision MOB-001 Basic German 1; A1: Intensive Course / Sprachenzentrum der UZH und der ETH Zürich

GRADUATE COURSES AT UMICH

EECS 501 Probability and Random Processes EECS 559 Optimization Methods in Signal Processing and Machine Learning SI 507 Intermediate Programming[code] EECS 551 Matrix Methods for Signal Processing, Data Analysis and Machine Learning EECS 504 Foundations of Computer Vision[code]

AUDITED COURSES

401-3904-22L Convex Optimization EECS 598-005 Deep Learning for Computer Vision[code]